Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
PURITAN MEDICAL

Deascargar La Aplicación Móvil





El primer Gran Desafío de segmentación de lesiones pulmonares detectadas con la TC para la COVID-19, revela los 10 mejores resultados

Por el equipo editorial de LabMedica en español
Actualizado el 14 Jan 2021
Ilustración
Ilustración
Se dieron a conocer los 10 resultados principales en el primer Gran Desafío de Segmentación de Lesiones Pulmonares por TC para la COVID-19, un concurso de investigación innovador centrado en el desarrollo de modelos de inteligencia artificial (IA) para ayudar en la visualización y medición de lesiones específicas de COVID-19 en los pulmones de pacientes infectados, lo que potencialmente facilita intervenciones médicas más oportunas y específicas para cada paciente.

El concurso, que atrajo a más de 1.000 participantes de todo el mundo, fue presentado por el Instituto Sheikh Zayed de Innovación Quirúrgica Pediátrica del Hospital Nacional Pediátrico (Washington, DC, EUA) en colaboración con la empresa de tecnología de inteligencia artificial NVIDIA (Santa Clara, CA, EUA) y los Institutos Nacionales. de Salud (NIH). Los modelos de IA presentados a la competencia utilizaron un conjunto de datos multiinstitucionales y multinacionales proporcionados por varios conjuntos de datos públicos que se originaron en pacientes de diferentes edades, géneros y con una gravedad variable de la enfermedad. NVIDIA premió con una GPU a los cinco primeros ganadores y también apoyó el proceso de selección y evaluación.

Los 10 mejores algoritmos de IA se identificaron a partir de un campo altamente competitivo de participantes que probaron los datos en noviembre y diciembre de 2020. Además de un premio por los cinco mejores modelos de IA, estos algoritmos ganadores ahora están disponibles para asociarse con instituciones clínicas de todo el mundo con el fin de evaluar más a fondo cómo estos métodos de aprendizaje automático e imágenes cuantitativas pueden tener un impacto potencial en la salud pública mundial.

“La mejora del tratamiento con COVID-19 comienza con una comprensión más clara del estado de la enfermedad del paciente. Sin embargo, una falta previa de colaboración de datos globales limitó a los médicos en su capacidad para comprender de manera rápida y efectiva la gravedad de la enfermedad en pacientes adultos y pediátricos”, dijo Marius George Linguraru, D.Phil., MA, M.Sc., investigador principal del Instituto Sheikh Zayed para la Innovación Quirúrgica Pediátrica en el Nacional Pediátrico, quien dirigió la iniciativa Gran Desafío. “Al aprovechar el poder de la IA a través de imágenes cuantitativas y aprendizaje automático, estos descubrimientos ayudan a los médicos a comprender mejor la gravedad de la COVID-19 y potencialmente estratificar y clasificar en protocolos de tratamiento adecuados para las diferentes etapas de la enfermedad”.

“Las anotaciones de calidad son un factor limitante en el desarrollo de modelos útiles de IA”, dijo Mona Flores, M.D., directora global de IA médica de NVIDIA. “Utilizando el modelo de segmentación de lesiones de NVIDIA COVID, disponible en nuestro centro de software NGC, pudimos etiquetar rápidamente el conjunto de datos de los NIH, lo que permitió a los radiólogos realizar anotaciones precisas en un tiempo récord”.

Enlace relacionado:
Hospital Nacional Pediátrico

New
Miembro Oro
Serological Pipets
INTEGRA Serological Pipets
ANALIZADOR HEMATOLÓGICO DE 3 PARTES
Swelab Alfa Plus Sampler
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
New
Miembro Oro
Pipette Management Software
VIALINK

DIASOURCE (A Biovendor Company)

Canales

Patología

ver canal
Imagen: un estudio en tiempo real ha demostrado que la IA podría acelerar la atención del cáncer (foto cortesía de Campanella, et al., Nature Madicine)

IA predice con precisión mutaciones genéticas en muestras patológicas rutinarias para atención oncológica más rápida

Las decisiones actuales sobre el tratamiento del cáncer suelen basarse en pruebas genéticas, que pueden ser costosas, requerir mucho tiempo y no siempre estar disponibles en los principales hospitales.... Más

Tecnología

ver canal
Imagen: el kit prototipo de prueba en el hogar para el nuevo diagnóstico incluye un andamio impreso en 3D (cortesía de Kamyar Behrouzi/UC Berkeley)

Tecnología de biodetección económica localiza biomarcadores de enfermedades en minutos

Las pruebas rápidas caseras para enfermedades como la COVID-19 se han vuelto cada vez más populares por su comodidad, pero presentan una desventaja importante: son menos sensibles que las... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.