Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil





Modelo de inteligencia artificial (IA) identifica a los pacientes con COVID-19 mediante pruebas de sangre y radiografías de tórax

Por el equipo editorial de LabMedica en español
Actualizado el 27 Jul 2021
Imagen: El modelo de inteligencia artificial (IA) identifica a pacientes con COVID-19 mediante análisis de sangre y radiografías de tórax (Fotografía cortesía de Nature)
Imagen: El modelo de inteligencia artificial (IA) identifica a pacientes con COVID-19 mediante análisis de sangre y radiografías de tórax (Fotografía cortesía de Nature)
Los investigadores han desarrollado una aplicación de aprendizaje automático para la predicción de la infección por SARS-CoV-2 mediante análisis de sangre y radiografías de tórax.

El modelo de aprendizaje automático, desarrollado por investigadores de la Universidad de Hong Kong (Hong Kong), pudo lograr una alta exactitud para la predicción de la infección por SARS-CoV-2 en un estudio de validación. El uso complementario de la radiografía de tórax podría desempeñar un papel en el aumento de la sensibilidad al tiempo que se logra una especificidad moderada cuando se combina con el modelo de sangre de aprendizaje automático, lo que puede tener implicaciones potenciales en la clasificación de pacientes, particularmente cuando los recursos para las pruebas de RT-PCR son escasos.

El objetivo de este estudio fue aplicar aprendizaje automático para la tarea de detección de COVID-19 utilizando marcadores de laboratorio básicos y explorar el papel coadyuvante de las radiografías de tórax. Los investigadores inicialmente realizaron una comparación estadística de análisis de sangre en pacientes con diferentes etiologías de neumonía, incluido la COVID-19 que involucró a 5.148 pacientes en 24 hospitales de Hong Kong durante la primera y segunda oleadas de infección. Esto se hizo para establecer una comparación de laboratorio de referencia entre la COVID-19 de otras neumonías y otros diagnósticos. Luego, los investigadores entrenaron y validaron modelos de aprendizaje automático utilizando análisis de sangre básicos en comparación con las pruebas de RT-PCR de referencia para predecir el estado de la infección por COVID-19 y explorar diferentes escenarios de casos de uso con el complemento de las radiografías de tórax. Luego, los modelos se validaron con conjuntos de validación temporal en otras oleadas de infección en Hong Kong.

Para predecir la infección por SARS-CoV-2, el modelo de aprendizaje automático logró AUC y especificidad altas, pero baja sensibilidad en los tres conjuntos de validación (AUC: 89,9-95,8%; Sensibilidad: 55,5-77,8%; Especificidad: 91,5-98,3%). Cuando se utiliza junto con las interpretaciones de los radiólogos de las radiografías de tórax, la sensibilidad fue superior al 90% manteniendo una especificidad moderada. El estudio mostró que el modelo de aprendizaje automático basado en marcadores de laboratorio fácilmente disponibles podría lograr una alta exactitud en la predicción de la infección por SARS-CoV-2.

Enlace relacionado:
Universidad de Hong Kong

New
Miembro Oro
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Canales

Diagnóstico Molecular

ver canal
Imagen: más de 100 nuevos biomarcadores epigenéticos pueden ayudar a predecir el riesgo de enfermedad cardiovascular (foto cortesía de 123RF)

Extracciones de sangre rutinarias podrían detectar biomarcadores epigenéticos para predecir riesgo de enfermedad cardiovascular

Las enfermedades cardiovasculares son una de las principales causas de muerte en todo el mundo; sin embargo, predecir el riesgo individual sigue siendo un desafío persistente. Los factores de riesgo... Más

Patología

ver canal
Imagen: un informe de caso de fibrosarcoma en adulto ha mostrado la importancia del diagnóstico temprano y la terapia dirigida (foto cortesía de Sultana y Sailaja/Oncoscience)

Análisis patológico preciso mejora resultados del tratamiento del fibrosarcoma en adultos

El fibrosarcoma en adultos es una neoplasia maligna poco frecuente y muy agresiva que se desarrolla en el tejido conectivo y suele afectar las extremidades, el tronco o la región de la cabeza y el cuello.... Más

Tecnología

ver canal
Imagen: diseño conceptual de la cápsula CORAL para el muestreo microbiano en el intestino delgado (H. Mohammed et al., Devuce (2025). DOI: 10.1016/j.device.2025.100904)

Muestras de cápsulas inspiradas en corales ocultan bacterias intestinales

El microbioma intestinal se ha vinculado a afecciones que van desde trastornos inmunitarios hasta problemas de salud mental. Sin embargo, las pruebas de heces convencionales a menudo no logran detectar... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.