Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
PURITAN MEDICAL

Deascargar La Aplicación Móvil





Modelo de inteligencia artificial (IA) identifica a los pacientes con COVID-19 mediante pruebas de sangre y radiografías de tórax

Por el equipo editorial de LabMedica en español
Actualizado el 27 Jul 2021
Imagen: El modelo de inteligencia artificial (IA) identifica a pacientes con COVID-19 mediante análisis de sangre y radiografías de tórax (Fotografía cortesía de Nature)
Imagen: El modelo de inteligencia artificial (IA) identifica a pacientes con COVID-19 mediante análisis de sangre y radiografías de tórax (Fotografía cortesía de Nature)
Los investigadores han desarrollado una aplicación de aprendizaje automático para la predicción de la infección por SARS-CoV-2 mediante análisis de sangre y radiografías de tórax.

El modelo de aprendizaje automático, desarrollado por investigadores de la Universidad de Hong Kong (Hong Kong), pudo lograr una alta exactitud para la predicción de la infección por SARS-CoV-2 en un estudio de validación. El uso complementario de la radiografía de tórax podría desempeñar un papel en el aumento de la sensibilidad al tiempo que se logra una especificidad moderada cuando se combina con el modelo de sangre de aprendizaje automático, lo que puede tener implicaciones potenciales en la clasificación de pacientes, particularmente cuando los recursos para las pruebas de RT-PCR son escasos.

El objetivo de este estudio fue aplicar aprendizaje automático para la tarea de detección de COVID-19 utilizando marcadores de laboratorio básicos y explorar el papel coadyuvante de las radiografías de tórax. Los investigadores inicialmente realizaron una comparación estadística de análisis de sangre en pacientes con diferentes etiologías de neumonía, incluido la COVID-19 que involucró a 5.148 pacientes en 24 hospitales de Hong Kong durante la primera y segunda oleadas de infección. Esto se hizo para establecer una comparación de laboratorio de referencia entre la COVID-19 de otras neumonías y otros diagnósticos. Luego, los investigadores entrenaron y validaron modelos de aprendizaje automático utilizando análisis de sangre básicos en comparación con las pruebas de RT-PCR de referencia para predecir el estado de la infección por COVID-19 y explorar diferentes escenarios de casos de uso con el complemento de las radiografías de tórax. Luego, los modelos se validaron con conjuntos de validación temporal en otras oleadas de infección en Hong Kong.

Para predecir la infección por SARS-CoV-2, el modelo de aprendizaje automático logró AUC y especificidad altas, pero baja sensibilidad en los tres conjuntos de validación (AUC: 89,9-95,8%; Sensibilidad: 55,5-77,8%; Especificidad: 91,5-98,3%). Cuando se utiliza junto con las interpretaciones de los radiólogos de las radiografías de tórax, la sensibilidad fue superior al 90% manteniendo una especificidad moderada. El estudio mostró que el modelo de aprendizaje automático basado en marcadores de laboratorio fácilmente disponibles podría lograr una alta exactitud en la predicción de la infección por SARS-CoV-2.

Enlace relacionado:
Universidad de Hong Kong

Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
CONTROLADOR DE PIPETA SEROLÓGICAPIPETBOY GENIUS
New
PlGF Test
Quidel Triage PlGF Test
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G

DIASOURCE (A Biovendor Company)

Canales

Patología

ver canal
Imagen: un estudio en tiempo real ha demostrado que la IA podría acelerar la atención del cáncer (foto cortesía de Campanella, et al., Nature Madicine)

IA predice con precisión mutaciones genéticas en muestras patológicas rutinarias para atención oncológica más rápida

Las decisiones actuales sobre el tratamiento del cáncer suelen basarse en pruebas genéticas, que pueden ser costosas, requerir mucho tiempo y no siempre estar disponibles en los principales hospitales.... Más

Tecnología

ver canal
Imagen: los investigadores Dr. Lee Eun Sook y el Dr. Lee Jinhyung examinan el equipo de impresión utilizado para la síntesis de nanodisco (foto cortesía de KRISS)

Nanomaterial multifuncional realiza simultáneamente diagnóstico, tratamiento y activación inmunitaria del cáncer

Los tratamientos contra el cáncer, como la cirugía, la radioterapia y la quimioterapia, presentan limitaciones significativas. Estos tratamientos no solo atacan las zonas cancerosas, sino... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.