Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Please note that the LabMedica website is also available in a complete English version
Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
LGC Clinical Diagnostics

Deascargar La Aplicación Móvil




Eventos

24 feb 2024 - 28 feb 2024
05 mar 2024 - 07 mar 2024

Análisis celular asistido por computadora permite diagnóstico más rápido de enfermedades de la sangre

Por el equipo editorial de LabMedica en español
Actualizado el 20 Aug 2023
Print article
Imagen: Un algoritmo de IA puede ayudar a los médicos a diagnosticar trastornos sanguíneos (Fotografía cortesía de Freepik)
Imagen: Un algoritmo de IA puede ayudar a los médicos a diagnosticar trastornos sanguíneos (Fotografía cortesía de Freepik)

Los trastornos de la sangre se caracterizan frecuentemente por alteraciones en las cantidades y formas de los glóbulos rojos y blancos. Los métodos tradicionales para diagnosticar la enfermedad implican examinar frotis de sangre en un portaobjetos bajo un microscopio, aunque evaluar estos cambios puede ser desafiante incluso para profesionales con experiencia, ya que las sutiles alteraciones pueden afectar solo una pequeña fracción de las decenas de miles de células visibles. En consecuencia, distinguir entre enfermedades no siempre es sencillo. Por ejemplo, los cambios visibles en la sangre de las personas con síndrome mielodisplásico (SMD), una forma temprana de leucemia, a menudo se asemejan a los que se observan en tipos de anemia menos dañinos. El diagnóstico definitivo de SMD requiere procedimientos más invasivos, como biopsias de médula ósea y pruebas genéticas moleculares.

Científicos del Centro Alemán de Investigación del Cáncer (DKFZ, Heidelberg, Alemania) y el Instituto de Células Madre de Cambridge (Cambridge, Reino Unido) ahora han desarrollado un sistema de inteligencia artificial (IA) capaz de identificar y caracterizar glóbulos blancos y rojos en imágenes microscópicas de muestras de sangre. Este algoritmo, llamado Haemorasis, ayuda a los médicos a diagnosticar trastornos de la sangre y es de acceso público como una herramienta de código abierto con fines de investigación. Inicialmente, los científicos entrenaron a Haemorasis para reconocer la morfología celular utilizando más de medio millón de glóbulos blancos y millones de glóbulos rojos de más de 300 personas con diversos trastornos sanguíneos (incluidas diferentes formas de anemia y SMD).

Aprovechando este conocimiento adquirido, Haemorasis ahora puede proponer diagnósticos para trastornos sanguíneos e incluso diferenciar subtipos genéticos de estas afecciones. Además, el algoritmo descubre asociaciones significativas entre enfermedades y formas de células específicas, una tarea complicada por el gran volumen de células involucradas. Haemorasis se sometió a pruebas en tres grupos de pacientes distintos para confirmar su eficacia en diversos centros de pruebas y sistemas de escaneo de hemogramas. Diseñado para el diagnóstico de hematología, Haemorasis ayuda a proporcionar un diagnóstico inicial más preciso de los trastornos sanguíneos, que es un paso esencial para identificar a los pacientes que pueden requerir procedimientos más invasivos, como pruebas de médula ósea o análisis genético. Los estudios en curso explorarán las posibles limitaciones del método.

"El análisis celular automatizado con Haemorasis podría complementar el diagnóstico de rutina de los trastornos sanguíneos en el futuro. Hasta ahora, el algoritmo solo se ha entrenado en enfermedades específicas, pero aún vemos un gran potencial en este método", dijo Moritz Gerstung de DKFZ.

Enlaces relacionados:
Centro Alemán de Investigación del Cáncer
Instituto de Células Madre de Cambridge

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Miembro Oro
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA

Print article

Canales

Química Clínica

ver canal
Imagen: La solución de espectrometría de masas de Cobas para laboratorios clínicos (Fotografía cortesía de Roche Diagnostics)

Analizador clínico automatizado basado en espectrometría de masas podría transformar pruebas de laboratorio

La espectrometría de masas, conocida por su mayor sensibilidad y especificidad en comparación con los inmunoensayos, es particularmente efectiva para probar moléculas como la vitamina... Más

Hematología

ver canal
Imagen: El CytoTracker Leukometer es un dispositivo portátil que ofrece rápidamente lecturas basadas en una sola gota de sangre (Fotografía cortesía de RizLab Health)

Rastreador portátil de glóbulos blancos podría permitir pruebas rápidas de infecciones

Los glóbulos blancos, o leucocitos, son indicadores clave de la salud del sistema inmunológico de un individuo. Los recuentos altos o bajos de leucocitos pueden indicar la gravedad de una infección, indicar... Más

Inmunología

ver canal
Imagen: Configuracion de la citometría con el chip de clasificación de células de IMEC (Fotografía cortesía de IMEC)

Tecnología de chip clasificador de células podría allanar el camino para elaboración de perfiles inmunológicos POC

Monitorear la respuesta del sistema inmunológico de los pacientes con cáncer durante la enfermedad y el tratamiento es importante para lograr resultados favorables. Para hacer esto, los laboratorios... Más

Tecnología

ver canal
Imagen: El sensor electroquímico detecta HPV-16 y HPV-18 con alta especificidad (Fotografía cortesía de 123RF)

Biosensor de ADN permite diagnóstico temprano del cáncer de cuello uterino

El disulfuro de molibdeno (MoS2), reconocido por su potencial para formar nanoláminas bidimensionales como el grafeno, es un material que llama cada vez más la atención de la comunidad... Más
Copyright © 2000-2024 Globetech Media. All rights reserved.