Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




Análisis celular asistido por computadora permite diagnóstico más rápido de enfermedades de la sangre

Por el equipo editorial de LabMedica en español
Actualizado el 20 Aug 2023
Imagen: Un algoritmo de IA puede ayudar a los médicos a diagnosticar trastornos sanguíneos (Fotografía cortesía de Freepik)
Imagen: Un algoritmo de IA puede ayudar a los médicos a diagnosticar trastornos sanguíneos (Fotografía cortesía de Freepik)

Los trastornos de la sangre se caracterizan frecuentemente por alteraciones en las cantidades y formas de los glóbulos rojos y blancos. Los métodos tradicionales para diagnosticar la enfermedad implican examinar frotis de sangre en un portaobjetos bajo un microscopio, aunque evaluar estos cambios puede ser desafiante incluso para profesionales con experiencia, ya que las sutiles alteraciones pueden afectar solo una pequeña fracción de las decenas de miles de células visibles. En consecuencia, distinguir entre enfermedades no siempre es sencillo. Por ejemplo, los cambios visibles en la sangre de las personas con síndrome mielodisplásico (SMD), una forma temprana de leucemia, a menudo se asemejan a los que se observan en tipos de anemia menos dañinos. El diagnóstico definitivo de SMD requiere procedimientos más invasivos, como biopsias de médula ósea y pruebas genéticas moleculares.

Científicos del Centro Alemán de Investigación del Cáncer (DKFZ, Heidelberg, Alemania) y el Instituto de Células Madre de Cambridge (Cambridge, Reino Unido) ahora han desarrollado un sistema de inteligencia artificial (IA) capaz de identificar y caracterizar glóbulos blancos y rojos en imágenes microscópicas de muestras de sangre. Este algoritmo, llamado Haemorasis, ayuda a los médicos a diagnosticar trastornos de la sangre y es de acceso público como una herramienta de código abierto con fines de investigación. Inicialmente, los científicos entrenaron a Haemorasis para reconocer la morfología celular utilizando más de medio millón de glóbulos blancos y millones de glóbulos rojos de más de 300 personas con diversos trastornos sanguíneos (incluidas diferentes formas de anemia y SMD).

Aprovechando este conocimiento adquirido, Haemorasis ahora puede proponer diagnósticos para trastornos sanguíneos e incluso diferenciar subtipos genéticos de estas afecciones. Además, el algoritmo descubre asociaciones significativas entre enfermedades y formas de células específicas, una tarea complicada por el gran volumen de células involucradas. Haemorasis se sometió a pruebas en tres grupos de pacientes distintos para confirmar su eficacia en diversos centros de pruebas y sistemas de escaneo de hemogramas. Diseñado para el diagnóstico de hematología, Haemorasis ayuda a proporcionar un diagnóstico inicial más preciso de los trastornos sanguíneos, que es un paso esencial para identificar a los pacientes que pueden requerir procedimientos más invasivos, como pruebas de médula ósea o análisis genético. Los estudios en curso explorarán las posibles limitaciones del método.

"El análisis celular automatizado con Haemorasis podría complementar el diagnóstico de rutina de los trastornos sanguíneos en el futuro. Hasta ahora, el algoritmo solo se ha entrenado en enfermedades específicas, pero aún vemos un gran potencial en este método", dijo Moritz Gerstung de DKFZ.

Enlaces relacionados:
Centro Alemán de Investigación del Cáncer
Instituto de Células Madre de Cambridge

Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer

Canales

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la plataforma de diagnóstico de precisión dSHERLOCK permite la evaluación cuantitativa de infecciones por hongos en 20 minutos (fotografía cortesía del Instituto Wyss de la Universidad de Harvard)

Plataforma de IA permite detección rápida de patógenos de C. auris resistentes a fármacos

Las infecciones causadas por la levadura patógena Candida auris representan una amenaza significativa para los pacientes hospitalizados, en particular para aquellos con sistemas inmunitarios debilitados... Más

Industria

ver canal
Imagen: la plataforma molecular de punto de atención LIAISON NES (fotografía cortesía de Diasorin)

Diasorin y Fisher Scientific firman acuerdo de distribución en EUA para plataforma POC molecular

Diasorin (Saluggia, Italia) ha firmado un acuerdo de distribución exclusivo con Fisher Scientific, parte de Thermo Fisher Scientific (Waltham, MA, EUA), para la plataforma molecular de punto de... Más
Copyright © 2000-2026 Globetech Media. All rights reserved.