Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros

Deascargar La Aplicación Móvil




IA aprovecha genética tumoral para predecir respuesta del paciente a quimioterapia

Por el equipo editorial de LabMedica en español
Actualizado el 07 Feb 2024
Imagen: Cáncer de cuello uterino, que se muestra aquí a nivel celular, con frecuencia resiste el tratamiento (Fotografía cortesía del Instituto Nacional del Cáncer/Unsplash)
Imagen: Cáncer de cuello uterino, que se muestra aquí a nivel celular, con frecuencia resiste el tratamiento (Fotografía cortesía del Instituto Nacional del Cáncer/Unsplash)

Comprender las respuestas de los tumores a los fármacos se vuelve un desafío debido a la naturaleza compleja de la replicación del ADN, un objetivo fundamental para muchos tratamientos contra el cáncer. Todas las células, incluidas las cancerosas, dependen de un sofisticado sistema de replicación del ADN durante la división celular. La mayoría de las quimioterapias tienen como objetivo interrumpir este proceso de replicación en células tumorales que se multiplican rápidamente. Dadas las diversas mutaciones genéticas en los tumores, predecir la resistencia a los medicamentos sigue siendo un desafío formidable. Ahora, los científicos han desarrollado un algoritmo de aprendizaje automático capaz de predecir cuándo el cáncer resistirá la quimioterapia. Este modelo se probó específicamente en cáncer de cuello uterino y predijo con precisión las respuestas al cisplatino, un fármaco de quimioterapia ampliamente utilizado. Identificó eficazmente tumores que probablemente resistirían el tratamiento y arrojó luz sobre los mecanismos moleculares que impulsan esta resistencia.

Desarrollado por la Facultad de Medicina de la Universidad de California en San Diego (La Jolla, CA, EUA), el algoritmo evalúa cómo varias mutaciones genéticas impactan colectivamente la respuesta de un tumor a los fármacos inhibidores de la replicación del ADN. La investigación se centró en 718 genes que normalmente se analizan en pruebas genéticas clínicas para detectar cáncer. Las mutaciones de estos genes formaron la base del modelo de aprendizaje automático, entrenado utilizando datos de respuesta a fármacos disponibles públicamente. Este proceso condujo a la identificación de 41 complejos moleculares (grupos de proteínas que interactúan) donde las alteraciones genéticas afectan la eficacia de los fármacos. La eficacia del modelo se demostró particularmente en el cáncer de cuello uterino, donde aproximadamente el 35 % de los tumores muestran resistencia al tratamiento.

El algoritmo distinguió con éxito entre tumores que probablemente responderían al tratamiento, correlacionándose con mejores resultados de los pacientes, y aquellos que eran resistentes. Es importante destacar que el modelo también proporcionó información sobre su proceso de toma de decisiones al identificar los complejos proteicos que impulsan la resistencia en el cáncer de cuello uterino. Esta característica de interpretabilidad del modelo es crucial no sólo por su eficacia sino también para establecer sistemas de IA confiables en aplicaciones médicas.

"Los médicos conocían previamente algunas mutaciones individuales que están asociadas con la resistencia al tratamiento, pero estas mutaciones aisladas tendían a carecer de un valor predictivo significativo. La razón es que una cantidad mucho mayor de mutaciones puede moldear la respuesta de un tumor al tratamiento de lo que se pensaba anteriormente", dijo Trey Ideker, PhD, profesor del Departamento de Medicina de UC San Diego. "La inteligencia artificial cierra esa brecha en nuestra comprensión, permitiéndonos analizar una compleja gama de miles de mutaciones a la vez".

"Desentrañar el proceso de toma de decisiones de un modelo de IA es crucial, a veces tan importante como la propia predicción", añadió Ideker. "La transparencia de nuestro modelo es una de sus fortalezas, en primer lugar porque genera confianza en el modelo y, en segundo lugar, porque cada uno de estos conjuntos moleculares que hemos identificado se convierte en un nuevo objetivo potencial para la quimioterapia. Somos optimistas de que nuestro modelo tendrá amplias aplicaciones, no sólo para mejorar el tratamiento actual contra el cáncer, sino también para impulsar otros nuevos".

Enlaces relacionados:
Universidad de California San Diego

Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Miembro Oro
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay

Canales

Diagnóstico Molecular

ver canal
Imagen: las vesículas extracelulares derivadas de neuronas contienen muchos biomarcadores candidatos para el Alzheimer (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Vesículas extracelulares derivadas de neuronas mejoran diagnóstico del Alzheimer

La enfermedad de Alzheimer es cada vez más común a medida que la población mundial envejece, pero los tratamientos efectivos para las etapas avanzadas siguen siendo limitados.... Más

Hematología

ver canal
Imagen: las células leucémicas residuales pueden predecir la supervivencia a largo plazo en la leucemia mieloide aguda (fotografía cortesía de Shutterstock)

Pruebas de MRD podrían predecir supervivencia en pacientes con leucemia

La leucemia mieloide aguda es un cáncer sanguíneo agresivo que altera la producción normal de células sanguíneas y suele recaer incluso después de un tratamiento intensivo. Actualmente, los médicos carecen... Más

Patología

ver canal
Imagen: la herramienta de IA avanza en el diagnóstico de precisión al vincular las mutaciones genéticas directamente con los tipos de enfermedades (fotografía cortesía de Shutterstock)

Herramienta de IA identifica simultáneamente mutaciones genéticas y tipos de enfermedades

La interpretación de los resultados de las pruebas genéticas sigue siendo un gran desafío en la medicina moderna, especialmente en el caso de enfermedades raras y complejas.... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.